

TASKS AND SOLUTIONS

CREDITS

Host Scientific Committee:

Bojan Antolović
Zvonimir Bujanović

Ante ðerek
Luka Kalinovčić
Lovro Pužar
Ivan Sikirić
Frane Šarić

Special thanks to:

Cesar Cepeda
Gordon V. Cormack

Michal Forišek
Derek Kisman
Martin Mareš
Pavel Pankov

CONTENTS

Chip ... 4

Fish .. 7

Robot ... 9

Aliens ..12

Flood...16

Sails.. 20

Miners .. 24

Pairs ... 27

Training ..31

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
ANTE ðEREK
(CROATIAN OLYMPIAD 2004)

PRACTICE SESSION – CHIP

Page 4 of 35

CCHHIIPP
A chip is being produced on a square silicon plate.

The chip contains a number of power junctions, each described with a pair of integer coordinates. The first

coordinate increases from left to right, while the second increases bottom up. The lower left corner of the chip is

marked (0, 0).

For the chip to function properly, each power junction must be connected to one of the four sides of the chip

using a single straight horizontal or vertical wire segment. Additionally, no two wires may overlap, intersect, or

even touch.

Sample 6x6 chip with 4 power junctions Connecting the power junctions to the

chip's sides using 5 units of wire

TTAASSKK

You will be given the length of the sides of the chip and the locations of all power junctions. Find a way to

connect the junctions to the sides, so that the total length of wire used is the smallest possible.

This is an output-only task. You will be given 10 input files and only need to produce the matching output files.

You may download the input files from the contest system, on the page labeled "Tasks".

You need to submit each output file separately on the contest system. When submitting, the contest system will

check the format of your output file. If the format is valid, the output file will be graded; otherwise, the contest

system will report an error.

IINNPPUUTT

The first line of input contains a single integer A (2 ≤ A ≤ 30), the length of the side of the chip.

The second line contains an integer N (1 ≤ N ≤ 50), the number of power junctions.

Each of the following N lines contains two integers X and Y (1 ≤ X, Y ≤ A-1), the coordinates of a power

junction. No two power junctions will occupy the same position.

You may assume that there exists a solution for each input file.

OOUUTTPPUUTT

The first line of the output should contain the total length of wire used.

The following N lines should describe the connections. For each power junction, in the order in which they were

given in the input, output one of "up", "down", "left" or "right", the direction in which wire runs from that

power junction.

If there is more than one optimal solution, output any one of them.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
ANTE ðEREK
(CROATIAN OLYMPIAD 2004)

PRACTICE SESSION – CHIP

Page 5 of 35

EEXXAAMMPPLLEESS

input

6
4
3 1
3 5
5 4
4 4

output

5
down
up
right
up

input

10
4
5 1
5 2
4 3
6 3

output

13
down
right
down
right

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
ANTE ðEREK
(CROATIAN OLYMPIAD 2004)

PRACTICE SESSION – CHIP

Page 6 of 35

SSOOLLUUTTIIOONN

Because the task is output-only, a well-implemented backtracking solution will be fast enough to run locally and

solve all test cases. The task was originally batch, with a time limit of 1 second. The remainder of this text shows

how to efficiently solve the problem.

First, sort the power junctions in increasing order by the x-coordinate. We will connect junctions to sides in that

order. Now, suppose we've already connected the first K junctions and consider our options for connecting the

junction K+1:

• Connecting to the right: Since all K junctions already connected have x-coordinate less than or equal to

this junction, we can always do this.

• Connecting to the left: Some of the previous junctions that are connected up or down might get in our

way. Of all junctions connected up we only have to check the one with the lowest y-coordinate, and of

all junctions connected down we only have to check the one with the highest y-coordinate. No other

junction is relevant in determining if we can connect junction K+1 to the left.

• Connecting up or down: Some previous junctions that are connected right might get in our way. Of all

such junctions we have to check only the one with the highest y-coordinate if we want to connect

junction K+1 up, and the one with the lowest y-coordinate if we are connecting junction K+1 down.

No other junction is relevant in determining if we can connect this junction up or down.

These five parameters (K, lowest y-coordinate of all junctions connected up, highest y-coordinate of all junctions

connected down, lowest y-coordinate containing of all junctions connected to the right, highest y-coordinate of

all junctions connected to the right) define all possible states we can encounter in the process of connecting

junctions.

These states, along with valid transitions between them, form a directed acyclic graph. We can calculate the

optimal configuration using dynamic programming. The time complexity of this algorithm is O(N·A4).

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LOVRO PUŽAR
(CROATIAN NATIONALS 2005)

PRACTICE SESSION – FISH

Page 7 of 35

FFIISSHH
In a small coastal country, all towns are situated on a long coastline (which we will model as a straight line). A

long straight road runs along the coast, connecting the towns. The position of each town can be described by a

single non-negative integer – the distance (in kilometers) from the start of the road.

Most of the citizens are fishermen, and they catch great amounts of fish. After the fishing season is over and

before the tourist season starts, the fish can be transported between different towns. A town can accommodate

X tourists if it has X tons of fish available. The goal is to accommodate the largest possible number of

tourists while distributing them evenly between towns. In other words, we want to find the largest integer Y

for which it is possible to distribute fish so that each town can accommodate at least Y tourists.

In one shipment, an integral number of tons of fish is sent from one town to another. During transportation,

one ton of fish per kilometer traveled is lost to hungry pillagers descending from the mountains. More

formally, if a town ships F tons of fish to another town that is D kilometers away, then F-D tons will arrive at

the destination; if F is less than D, then the entire shipment is lost.

It is possible to arbitrarily repackage and combine shipments in intermediate towns. For example, we can send

shipments from towns A and B to town C, combine half of the remaining fish from both shipments with the

fish originating in C and send it in a single large shipment from town C to town D.

TTAASSKK

Write a program that, given the positions of all towns and the amount of fish each town produces, determines

the largest number of tourists that can be accommodated by each city after the fish has been distributed.

IINNPPUUTT

The first line of input contains an integer N, 1 ≤ N ≤ 100 000, the number of towns.

Each of the following N lines contains two integers P and F, 0 ≤ P, F ≤ 1012, the position of a town (in

kilometers) and the amount of fish it produces (in tons). The towns will be sorted in ascending order of position.

The positions of all towns will be distinct.

OOUUTTPPUUTT

The first and only line of output should contain the largest number of tourists Y from the task description.

GGRRAADDIINNGG CCRRIITTEERRIIAA

In 50% of all test cases, N will be at most 100 and each town will produce at most 100 tons of fish.

DDEETTAAIILLEEDD FFEEEEDDBBAACCKK WWHHEENN SSUUBBMMIITTTTIINNGG

Your first 10 submissions for this task will be evaluated during the contest (as soon as possible) on part of the

official test data. After the evaluation is done, a summary of the results will be available on the contest system.

EEXXAAMMPPLLEESS

input

3
1 0
2 21
4 0

output

6

input

3
5 70
15 100
1200 20

output

20

input

4
20 300
40 400
340 700
360 600

output

415

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LOVRO PUŽAR
(CROATIAN NATIONALS 2005)

PRACTICE SESSION – FISH

Page 8 of 35

SSOOLLUUTTIIOONN

The key observation is that we can use a greedy algorithm to check if the towns can accomodate X tourists each.

The algorithm considers towns from left to right. If a town has more than X units of food, it can send all of its

excess food to the town directly to its right. If it has less than X units of food, it needs to receive food from the

town to its right (note that, unless it is the leftmost town, it may have already implicitly received or sent out food

to the cities to its left). If, after processing all towns, the rightmost town has enough food then X is a candidate

solution.

Now note that if X is a candidate solution, X−1 is most certainly also a candidate solution. Similarly, if X is not a

candidate solution, X+1 also cannot be a solution. With that in mind, we can use binary search to find the largest

X that is a candidate solution. The time complexity of this algorithm is O(N log MAX), where MAX is any

obvious upper bound on the solution.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
ANTE ðEREK
(CROATIAN OLYMPIAD 2004)

PRACTICE SESSION – ROBOT

Page 9 of 35

RROOBBOOTT
Dave wishes to plunder an empty house. In order to discover the exact layout of the target house, he has

teleported a remote-controlled robot inside.

The house is modeled as a grid composed of unit squares. Some squares are empty while others represent walls.

The robot is initially somewhere inside the house, in an empty square.

Dave can move the robot by sending a simple command – the direction to move in (up, down, left or right).

The robot can only move into an empty square; if it tries to move into a square occupied by a wall it will remain

at its original location. After each command, it reports back whether move was successful or not.

TTAASSKK

Write a program that, given the ability to communicate with the robot, determines the area of the room into

which the robot was teleported. The area of the room is the number of empty squares reachable from the robot's

initial position, including the starting square. The area will be at most 1000 and you are allowed to use at most

5000 move commands.

IINNTTEERRAACCTTIIOONN

This is an interactive task. Your program sends commands to the robot using the standard output, and receives

feedback from the robot by reading from the standard input.

To move the robot, you should output a single line containing one of the following commands: "up", "down",

"left" or "right" (without the quotation marks), the direction in which the robot should move.

The robot will respond with a single line containing the word "ok" if the move was successful or the word

"fail" otherwise.

When your program has found the solution, it should output a single line containing the area of the room and

terminate its execution.

In order to interact properly with the grader, your program needs to flush the standard output after every write

operation; the provided code samples show how to do this.

CCOODDEE SSAAMMPPLLEESS

Code samples in all three languages are available for download on the "Tasks" page of the contest system. The

code samples assume the room is rectangular and separately calculate the width and height of the room. This is

not the correct solution and it will not score all points; the purpose of the samples is to show how to interact

with the robot.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
ANTE ðEREK
(CROATIAN OLYMPIAD 2004)

PRACTICE SESSION – ROBOT

Page 10 of 35

EEXXAAMMPPLLEE

In the following example, commands are given in the left column, row by row. Feedback is given in the second

column of the corresponding row.

output (command) input (feedback)

up fail

left fail

right ok

up fail

right ok

down fail

up fail

right fail

left ok

down ok

down fail

left ok

left fail

down fail

5

TTEESSTTIINNGG

You can use the TEST facility of the grading system to automatically run your solution with custom test cases. A

single test case should be formatted as follows.

The first line of the test case should contain two integers R and C (1 ≤ R, C ≤ 500), the number of rows and

columns, respectively.

The following R lines should contain C characters each. The character '.' represents an empty square, the

character '#' represents a wall and the uppercase letter 'R' represents the starting location of the robot. There

must be exactly one 'R' character on the map, and it needs to be inside of a room (i.e. it should be impossible for

the robot to reach the edge of the map using valid moves).

Here is an example of a valid input file (corresponds to the example above). Notice that the robot is inside a

room and that there is no way for it to move off the map.

6 8
........
.#####..
.#R..#..
.#..####
.###....
..#.....

Valid input for test facility

The grading system will provide you with a detailed log of the execution.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
ANTE ðEREK
(CROATIAN OLYMPIAD 2004)

PRACTICE SESSION – ROBOT

Page 11 of 35

SSOOLLUUTTIIOONN

The room represents an undirected graph, where the vertices are empty squares, and edges exist between

adjacent squares. We need to determine an algorithm for traversing the room which guarantees that:

• The robot doesn't run into a loop;

• All squares in the room are found;

• No more than 5000 moves are used for a room of area 1000.

The two main algorithms for searching a graph are depth-first and breadth-first search, which both satisfy the

first two constraints. Breadth-first is not applicable for this problem because it would require the robot to "jump

around", and would use too many moves.

Depth-first search is the correct choice. The idea is to always move into any square which hasn't yet been visited,

but retrace steps when there are no more such squares. This way we traverse each edge in the graph either zero

or two times (once when entering a vertex and once when exiting). The number of edges visited twice is exactly

one less than the number of vertices (because the vertices and edges used form a search tree). Adding the moves

needed to explore the surrounding blocked squares, this still adds up to less than 5000 moves.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
PAVEL PANKOV

COMPETITION DAY 1 – ALIENS

Page 12 of 35

AALLIIEENNSS
Mirko is a big fan of crop circles, geometrical formations of flattened crops that are supposedly of alien origin.

One summer night he decided to make his own formation on his grandmother’s meadow. The great patriot that

he is, Mirko decided to make a crop formation that would have the shape of the shield part of the Croatian coat

of arms, which is a 5×5 chessboard with 13 red squares and 12 white squares.

The chessboard part of the Croatian coat of arms.

Grandma’s meadow is a square divided into N×N cells. The cell in the lower left corner of the meadow is

represented by the coordinates (1, 1) and the cell in the upper right corner is represented by (N, N).

Mirko decided to flatten only the grass belonging to red squares in the chessboard, leaving the rest of the grass

intact. He picked an odd integer M ≥ 3 and flattened the grass so that each square of the chessboard comprises

M×M cells in the meadow, and the chessboard completely fits inside the meadow.

Example meadow and Mirko's crop formation, with N=19 and M=3.
Cells with flattened grass are shown in gray.

The center of the formation is at (12, 9) and is marked with a black point.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
PAVEL PANKOV

COMPETITION DAY 1 – ALIENS

Page 13 of 35

After Mirko went to sleep, his peculiar creation drew the attention of real aliens! They are floating high above the

meadow in their spaceship and examining Mirko’s crop formation with a simple device. This device can only

determine whether the grass in a particular cell is flattened or not.

The aliens have found one cell with flattened grass and now they want to find the center cell of Mirko's

masterpiece, so that they may marvel at its beauty. They do not know the size M of each square in Mirko's

formation.

TTAASSKK

Write a program that, given the size N (15 ≤ N ≤ 2 000 000 000) of the meadow, the coordinates (X0, Y0) of one

cell with flattened grass, and the ability to interact with the alien device, finds the coordinates of the center cell of

Mirko’s crop formation.

The device may be used at most 300 times in one test run.

IINNTTEERRAACCTTIIOONN

This is an interactive task. Your program sends commands to the alien device using the standard output, and

receives feedback from the device by reading from the standard input.

• At the beginning of your program, you should read three integers N, X0 and Y0 from the standard input,

separated by single spaces. The number N is the size of the meadow, while (X0, Y0) are the coordinates

of one cell with flattened grass.

• To examine the grass in the cell (X, Y) using the alien device, you should output a line of the form

"examine X Y" to the standard output. If the coordinates (X, Y) are not inside the meadow (the

conditions 1 ≤ X ≤ N and 1 ≤ Y ≤ N are not satisfied), or if you use this facility more than 300 times,

your program will receive a score of zero on that test run.

• The alien device will respond with a single line containing the word "true" if the grass in cell (X, Y) is

flattened and the word "false" otherwise.

• When your program has found the center cell, it should output a line of the form "solution XC YC" to

the standard output, where (XC, YC) are the coordinates of the center cell. The execution of your

program will be automatically terminated once your program outputs a solution.

In order to interact properly with the grader, your program needs to flush the standard output after every write

operation; the provided code samples show how to do this.

CCOODDEE SSAAMMPPLLEESS

Code samples in all three programming languages are available for download on the "Tasks" page of the contest

system. The purpose of the samples is only to show how to interact with the alien device; these are not the

correct solutions and will not score all points.

GGRRAADDIINNGG

In test cases worth a total of 40 points, the size M of each of Mirko’s squares will be at most 100.

Each test run will have a unique correct answer that will not depend on the questions asked by your program.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
PAVEL PANKOV

COMPETITION DAY 1 – ALIENS

Page 14 of 35

EEXXAAMMPPLLEE

In the following example, commands are given in the left column, row by row. Feedback from the alien device is

given in the second column of the corresponding row.

output (command) input (feedback)

 19 7 4

examine 11 2 true

examine 2 5 false

examine 9 14 false

examine 18 3 true

solution 12 9

TTEESSTTIINNGG

During the contest, there are three ways to test your solutions.

The first way is for you to simulate the alien device manually and interact with your program.

The second way is to write a program which will simulate the alien device. To connect your solution and the

device you wrote, you may use a utility called "connect", available for download on the contest system. To use

the utility issue a command such as "./connect ./solution ./device" from the console (substituting

"solution" and "device" with the names of your two programs). Any additional command-line parameters will

be passed on to the device program.

The third way is to use the TEST facility of the grading system to automatically run your solution with a custom

test case. When using the facility, the size of the meadow N is limited to 100.

A test case should contain three lines:

• The first line contains the size N of the meadow and the size M of a square in the chessboard;

• The second line contains the coordinates X0 and Y0 of one cell of the meadow with flattened grass,

which will be given to your program;

• The third line contains the coordinates XC and YC of the center cell of the chessboard.

The grading system will provide you with a detailed log of the execution, including error messages if:

• N doesn’t satisfy the constraints;

• M is not an odd integer greater than or equal to 3;

• The crop formation doesn't fit in the meadow;

• The grass in cell (X0, Y0) is not flattened.

Here is an example of a valid input file for the test facility. The example corresponds to the figure on the first

page.

19 3
7 4
12 9

Valid input for the test facility.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
PAVEL PANKOV

COMPETITION DAY 1 – ALIENS

Page 15 of 35

SSOOLLUUTTIIOONN

We'll use the terms red cells and red squares for cells and squares with flattened grass. The other cells and

squares are white. Using the alien device at some coordinates is now equivalent to checking the color of a cell.

The process of finding the solution consists of two stages. The first stage is to determine the side length M of

one square of the chessboard and the center (XC, YC) of the red square F containing the given red cell (X0, Y0).

The second stage is to move from (XC, YC) to the center of the entire crop formation (using shifts of length M or

2M along each coordinate).

The key part of this task is efficiently solving the first stage. In order to find M, we should find:

• XR – the rightmost x-coordinate of cells in F,

• XL – the leftmost x-coordinate of cells in F, and

• YB – the bottom y-coordinate of cells in F.

We describe several approaches for finding XR; it is trivial to adapt them for finding XL and YB.

The most obvious algorithm checks the colors of cells (X0+1, Y0), (X0+2, Y0), (X0+3, Y0) etc., stopping at the

first white cell (XR+1, Y0) and using M queries in the worst case. This approach would score 40 points, as

described in the "Grading" section of the task description.

To cut down on the number of queries, let's instead check the color of cells (X0+1, Y0), (X0+2, Y0), (X0+4, Y0),

..., (X0+2k, Y0), ..., stopping at the cell we call Clast. This is the first white cell of the sequence or the first cell

outside the meadow boundaries (we must be careful not to query the device in the latter case). It can be shown

that all red cells left of Clast must belong to the square F and not to some other red square. Let Cprevious be the

rightmost red cell left of Clast. We have used at most log2 M queries so far.

Now we could reset X0 = Cprevious and repeat the procedure described in the last paragraph until [Cprevious, Clast]

contains only 2 cells, after which Cprevious = (XR, Y0). However, here we have used (log2 M)2 queries in the worst

case, which is only good enough to score 70 points.

To get the full score, use binary search on the segment [Cprevious, Clast] to find XR: (XR, Y0) is the only red cell in

that segment that has a neighboring white cell to the right. Using this algorithm we can find all of XR, XL and YB

using at most 6 log2 M queries total. Now, M=XR−XL+1, XC=XL+(M−1)/2, YC=YB+(M−1)/2.

This concludes the description of the first stage.

The second stage uses the alien device only a few times to detect which of 13 possible squares has (XC, YC) as the

center. Just checking the color of several cells having XC, XC±M, XC±2M as x-coordinates and YC, YC±M,

YC±2M as y-coordinates will do the trick.

Background
This problem is a reformulation of the task "SQUARES" externally submitted by Pavel S. Pankov from

Kyrgyzstan.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 1 – FLOOD

Page 16 of 35

FFLLOOOODD
In 1964 a catastrophic flood struck the city of Zagreb. Many buildings were completely destroyed when the

water struck their walls. In this task, you are given a simplified model of the city before the flood and you should

determine which of the walls are left intact after the flood.

The model consists of N points in the coordinate plane and W walls. Each wall connects a pair of points and

does not go through any other points. The model has the following additional properties:

• No two walls intersect or overlap, but they may touch at endpoints;

• Each wall is parallel to either the horizontal or the vertical coordinate axis.

Initially, the entire coordinate plane is dry. At time zero, water instantly floods the exterior (the space not

bounded by walls). After exactly one hour, every wall with water on one side and air on the other breaks under

the pressure of water. Water then floods the new area not bounded by any standing walls. Now, there may be

new walls having water on one side and air on the other. After another hour, these walls also break down and

water floods further. This procedure repeats until water has flooded the entire area.

An example of the process is shown in the following figure.

The state at time zero. Shaded cells
represent the flooded area, while

white cells represent dry area (air).

The state after one hour. The state after two hours. Water has
flooded the entire area and the 4
remaining walls cannot be broken

down.

TTAASSKK

Write a program that, given the coordinates of the N points, and the descriptions of W walls connecting these

points, determines which of the walls are left standing after the flood.

IINNPPUUTT

The first line of input contains an integer N (2 ≤ N ≤ 100 000), the number of points in the plane.

Each of the following N lines contains two integers X and Y (both between 0 and 1 000 000, inclusive), the

coordinates of one point. The points are numbered 1 to N in the order in which they are given. No two points

will be located at the same coordinates.

The following line contains an integer W (1 ≤ W ≤ 2N), the number of walls.

Each of the following W lines contains two different integers A and B (1 ≤ A ≤ N, 1 ≤ B ≤ N), meaning that,

before the flood, there was a wall connecting points A and B. The walls are numbered 1 to W in the order in

which they are given.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 1 – FLOOD

Page 17 of 35

OOUUTTPPUUTT

The first line of output should contain a single integer K, the number of walls left standing after the flood.

The following K lines should contain the indices of the walls that are still standing, one wall per line. The indices

may be output in any order.

GGRRAADDIINNGG

In test cases worth a total of 40 points, all coordinates will be at most 500.

In those same cases, and cases worth another 15 points, the number of points will be at most 500.

DDEETTAAIILLEEDD FFEEEEDDBBAACCKK WWHHEENN SSUUBBMMIITTTTIINNGG

During the contest, you may select up to 10 submissions for this task to be evaluated (as soon as possible) on

part of the official test data. After the evaluation is done, a summary of the results will be available on the contest

system.

EEXXAAMMPPLLEE

input

15
1 1
8 1
4 2
7 2
2 3
4 3
6 3
2 5
4 5
6 5
4 6
7 6
1 8
4 8
8 8
17
1 2
2 15
15 14
14 13
13 1
14 11
11 12
12 4
4 3
3 6
6 5
5 8
8 9
9 11
9 10
10 7
7 6

output

4
6
15
16
17

This example corresponds to the
figure on the previous page.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 1 – FLOOD

Page 18 of 35

SSOOLLUUTTIIOONN

Simulation
The simple solution is to "draw" the walls onto a two-dimensional array and use a 0-1 BFS algorithm (starting

from any outer cell) to calculate the flooding time for each cell. A wall is left standing after the flood if the times

needed to reach its two sides are equal.

The 0-1 BFS algorithm is used to find the shortest path in graphs in which edge has weight exactly 0 or 1 (using

a double-ended queue and inserting elements at the front when expanding through a 0-edge). In our model, each

pair of two adjacent cells is connected by an edge; weight of the edge is 1 if there is a wall between the cells, and

0 otherwise.

Since the size of the graph depends on the coordinates of the points, the number of cells we need to consider is

too big in general. This solution was awarded approximately 40 points.

Simulation with coordinate compression
To improve the above algorithm, we can observe that the exact coordinates of points are irrelevant – only the

relative order of points matters for the purpose of counting the walls standing after the flood. Therefore, if the

x�coordinates take A different values and the y�coordinates take B different values, we can map them to sets

{1, 2, ..., A} and {1, 2, ..., B}, respectively. The number of cells we need to consider while searching is now

O(A�B).

As both A and B are bounded by N (the number of points), this approach has total time complexity O(N2). This

solution was awarded approximately 55 points.

Model solution (dual-graph)
We represent each region (a maximal set of connected cells) as a node in a graph and we add edges between pairs

of nodes if the corresponding regions share a wall. We also add the outer region as a node in the graph and

connect it with all regions immediately exposed to water.

Notice that we do not need to find the exact flooding time for each region – we are only interested if two regions

sharing a wall are equally distant from the outer region or not. If one connected set of regions is completely

contained inside another region we can consider it separately while generating the above graph and connect it

directly to the outer region.

Running a simple BFS algorithm on the above graph starting from outer region gives us enough data to solve the

task. The hardest part of the solution is generating the graph.

One possible strategy is to imagine each wall as two one-way roads (going in opposite directions). Now, we pick

any road and drive along, turning right at each intersection – if we can turn right we do so, else if we can go

forward we do so, else if we can turn left we do so, else we turn backwards. For each starting road we will make

one lap around one region and end up where we started. By successively choosing new roads and traversing

them, we discover all possible regions. Exactly one traversal will give the an outer region. If for a particular wall,

the two roads yield different regions, we connect those regions by an edge.

This algorithm can be implemented with time complexity O(N+W).

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 1 – FLOOD

Page 19 of 35

Alternative model solution (Outer wall traversal)
Another, somewhat different, approach to the problem is to continuously walk around the components and

figure out which of the outer walls are going to collapse. We start by selecting a leftmost outer wall. Now,

imagine we put a right hand on the wall and start walking around the walls keeping the hand on the wall until we

return to the starting position. We observe that, of all the walls we touched, only those that we touched on both

sides will survive the flood. Next, we remove all the walls we touched, and repeat the process until all walls are

removed. This algorithm can be implemented in O(N log N + W) and also yields full points.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
IVAN SIKIRIĆ

COMPETITION DAY 1 – SAILS

Page 20 of 35

SSAAIILLSS
A new pirate sailing ship is being built. The ship has N masts (poles) divided into unit sized segments – the

height of a mast is equal to the number of its segments. Each mast is fitted with a number of sails and each sail

exactly fits into one segment. Sails on one mast can be arbitrarily distributed among different segments, but each

segment can be fitted with at most one sail.

Different configurations of sails generate different amounts of thrust when exposed to the wind. Sails in front of

other sails at the same height get less wind and contribute less thrust. For each sail we define its inefficiency as

the total number of sails that are behind this sail and at the same height. Note that "in front of" and "behind"

relate to the orientation of the ship: in the figure below, "in front of" means to the left, and "behind" means to

the right.

The total inefficiency of a configuration is the sum of the inefficiencies of all individual sails.

front back

This ship has 6 masts, of heights 3, 5, 4, 2, 4 and 3 from front (left side of image) to back.
This distribution of sails gives a total inefficiency of 10. The individual inefficiency of each sail is written inside the sail.

TTAASSKK

Write a program that, given the height and the number of sails on each of the N masts, determines the smallest

possible total inefficiency.

IINNPPUUTT

The first line of input contains an integer N (2 ≤ N ≤ 100 000), the number of masts on the ship.

Each of the following N lines contains two integers H and K (1 ≤ H ≤ 100 000, 1 ≤ K ≤ H), the height and the

number of sails on the corresponding mast. Masts are given in order from the front to the back of the ship.

OOUUTTPPUUTT

Output should consist of a single integer, the smallest possible total inefficiency.

Note: use a 64-bit integer type to calculate and output the result (long long in C/C++, int64 in Pascal).

GGRRAADDIINNGG

In test cases worth a total of 25 points, the total number of ways to arrange the sails will be at most 1 000 000.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
IVAN SIKIRIĆ

COMPETITION DAY 1 – SAILS

Page 21 of 35

EEXXAAMMPPLLEE

input

6
3 2
5 3
4 1
2 1
4 3
3 2

output

10

This example corresponds to the
figure on the previous page.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
IVAN SIKIRIĆ

COMPETITION DAY 1 – SAILS

Page 22 of 35

SSOOLLUUTTIIOONN

Each segment is positioned at a particular level – a mast of height H has segments at levels 1 through H. Notice

that the ordering of masts is irrelevant when counting the total inefficiency; the final result depends only on the

number of sails at each level.

Let us assume that the masts are sorted in ascending order by height. Consider the following greedy algorithm:

• Process masts left to right keeping track of the total number of sails at each level.

• For each new mast of height H with K sails, do the following: out of the H current levels, choose K

levels with the lowest number of sails and place the new sails there.

• Add up the values SX · (SX−1) / 2 for each level X, where SX is the number of sails placed at level X.

Report the sum as the solution.

We will omit the full proof of correctness for the algorithm. Intuitively, our goal is to keep the number of sails at

different levels as close as possible, therefore it makes sense to place new sails at levels with the lowest numbers

of sails so far.

In order to obtain a formal proof, show that any other choice is no better than the one this algorithm makes.

Assume that A and B are different levels such that the number of sails placed on level A so far is less than the

number of sails placed on level B so far, and argue that any configuration C that places a sail on B but not on A

can be transformed into a configuration C’ that does the opposite and has lower or equal inefficiency.

Suboptimal solutions
Although the algorithm is conceptually simple, it is not easy to find an implementation efficient enough for the

given input constraints.

The above algorithm can be directly simulated. We can explicitly maintain the total number of sails for each level

and update it at each step. If we use an array, we obtain an algorithm of time complexity

O(total_number_of_sails · max_height). Such solutions were awarded approximately 30 points.

Notice that, since the masts are sorted by height, we can only keep track of the sail counts, and ignore the

particular levels where they are obtained (that is, we can keep the histogram sorted). Hence, we can use a priority

queue to maintain the histogram and efficiently find the K lowest sail counts at each step. This approach can be

implemented with the time complexity of O(total_number_of_sails · log(max_height)). Such solutions were

awarded 40 points.

Keeping the histogram in a sorted array gives another suboptimal solution. At each step, we can find the K

lowest sail counts and update the histogram in one sweep. We just need to ensure that, among the levels with

same sail count, we pick and update earlier levels first (assuming the histogram is sorted by descending sail

counts). This approach can be implemented with the time complexity O(N · max_height). Such solutions were

awarded 50 points.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
IVAN SIKIRIĆ

COMPETITION DAY 1 – SAILS

Page 23 of 35

Model solution
The model solution also uses the idea that the histogram can be kept sorted, but, instead of keeping the sail

counts, it only maintains the differences between two successive sail counts. For example if, in the current state,

the height is 6 and the sail counts are 5, 3, 3, 3, 2 and 2, the difference array, delta, is 5, -2, 0, 0, -1, 0 and -2.

The essence of the model solution is a subroutine that transforms the difference array as we process new masts.

When processing a new mast of height H with K sails, we first add new entries to the end of the difference array

(corresponding to the highest levels that are currently empty), and then we add one sail to each of the lowest K

levels.

In order to add one sail to each level in the interval [A, B], in most cases we can simply increase delta[A] and

decrease delta[B]. When delta[A] is zero (i.e. when the left part of the interval is in the middle of a group of equal

sail counts), then the procedure results in an array that is not sorted. However, whenever delta[A] is not zero the

above described procedure results in a difference array corresponding to a sorted array.

Let level group be a group of levels with same sail count. Observe that level groups can be identified in the

difference array as a sequence of zeros bounded by nonzero values. In other words, to identify the level group

containing the level H, we need to find first nonzero value in delta sequence before and after H.

When updating the lowest K levels (interval [H−K+1, H]), the model solution works as follows:

If the left part of the interval (H−K+1) is in the middle of a level group [A, B] then update the intervals

[A, A+B−H+K−1] and [B+1, H]. In order to keep the array sorted, we have moved the new sails from the right

part to the left part of the level group.

Otherwise, update the interval [H−K+1, H].

In order to obtain an efficient solution we need to be able to quickly find the level group corresponding to a

particular level. There are a number of solutions based on this or similar ideas that score between 70 and 100

points, depending on the efficiency of the data structure used to identify the level group.

The model solution uses the interval tree data structure to answer the needed queries. Processing one mast will

take time O(log(H)), where H is the height of the mast. Therefore, the total time complexity of this solution is

O(N · log(max_height)).

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LOVRO PUŽAR

COMPETITION DAY 2 – MINERS

Page 24 of 35

MMIINNEERRSS
There are two coal mines, each employing a group of miners. Mining coal is hard work, so miners need food to

keep at it. Every time a shipment of food arrives at their mine, the miners produce some amount of coal. There

are three types of food shipments: meat shipments, fish shipments and bread shipments.

Miners like variety in their diet and they will be more productive if their food supply is kept varied. More

precisely, every time a new shipment arrives to their mine, they will consider the new shipment and the

previous two shipments (or fewer if there haven't been that many) and then:

• If all shipments were of the same type, they will produce one unit of coal.

• If there were two different types of food among the shipments, they will produce two units of coal.

• If there were three different types of food, they will produce three units of coal.

We know in advance the types of food shipments and the order in which they will be sent. It is possible to

influence the amount of coal that is produced by determining which shipment should go to which mine.

Shipments cannot be divided; each shipment must be sent to one mine or the other in its entirety.

The two mines don't necessarily have to receive the same number of shipments (in fact, it is permitted to send all

shipments to one mine).

TTAASSKK

Your program will be given the types of food shipments, in the order in which they are to be sent. Write a

program that finds the largest total amount of coal that can be produced (in both mines) by deciding which

shipments should be sent to mine 1 and which shipments should be sent to mine 2.

IINNPPUUTT

The first line of input contains an integer N (1 ≤ N ≤ 100 000), the number of food shipments.

The second line contains a string consisting of N characters, the types of shipments in the order in which they

are to be distributed. Each character will be one of the uppercase letters 'M' (for meat), 'F' (for fish) or 'B' (for

bread).

OOUUTTPPUUTT

Output a single integer, the largest total amount of coal that can be produced.

GGRRAADDIINNGG

In test cases worth a total of 45 points, the number of shipments N will be at most 20.

DDEETTAAIILLEEDD FFEEEEDDBBAACCKK WWHHEENN SSUUBBMMIITTTTIINNGG

During the contest, you may select up to 10 submissions for this task to be evaluated (as soon as possible) on

part of the official test data. After the evaluation is done, a summary of the results will be available on the contest

system.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LOVRO PUŽAR

COMPETITION DAY 2 – MINERS

Page 25 of 35

EEXXAAMMPPLLEESS

input

6
MBMFFB

output

12

input

16
MMBMBBBBMMMMMBMB

output

29

In the left sample, by distributing the shipments in this order: mine 1, mine 1, mine 2, mine 2, mine 1, mine 2,

the shipments will result in 1, 2, 1, 2, 3 and 3 units of coal produced in that order, for a total of 12 units. There

are other ways to achieve this largest amount.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LOVRO PUŽAR

COMPETITION DAY 2 – MINERS

Page 26 of 35

SSOOLLUUTTIIOONN

The problem is solved using dynamic programming. Let M(n, state1, state2) be the largest amount of coal that

can be produced after n−1 food shipments have already been distributed; state1 describes which shipments have

gone to mine 1 so far, and state2 describes which shipments have gone to mine 1 so far. Furthermore, let

value(a, b) denote the amount of coal produced when food of type b arrives to a mine in state a. The following

recursive formula holds:

M(n, state1, state2) = max {

M(n+1, newstate1, state2) + value(state1, type of shipment n),

 M(n+1, state1, newstate2) + value(state2, type of shipment n)

}

One could write a simple recursion based on the above formula (calculate M(0, empty, empty)). Such an

algorithm has O(2N) complexity and would score 45 points.

Note that, for calculating the value of M, it suffices to describe the state of a mine by the last two shipments

only. This is because any shipment, other than the last two, cannot influence the amount of coal produced. The

total number of different states is thus reduced to only 3*3+1=10 per mine (3 types of food in each of the last

two shipments, and a special state describing an empty mine).

This allows us to drastically reduce the total number of configurations: N shipments × 10 states (for the first

mine) × 10 states (for the second mine). For each of the configurations, we can calculate the value of the

configuration once and store it for reuse.

However, with N as high as 100 000, using so much memory (100N integers) for storing the values of the

configurations would break the memory limit and score between 70 and 85 points.

To get the full score, we note that, when calculating M(n, *, *), we only use M(n+1, *, *). If we calculate M in

decreasing order of n, we need only 2·100 integers.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – PAIRS

Page 27 of 35

PPAAIIRRSS
Mirko and Slavko are playing with toy animals. First, they choose one of three boards given in the figure below.

Each board consists of cells (shown as circles in the figure) arranged into a one, two or three dimensional grid.

Board 1 Board 2 Board 3

Mirko then places N little toy animals into the cells.

The distance between two cells is the smallest number of moves that an animal would need in order to reach

one cell from the other. In one move, the animal may step into one of the adjacent cells (connected by line

segments in the figure).

Two animals can hear each other if the distance between their cells is at most D. Slavko's task is to calculate

how many pairs of animals there are such that one animal can hear the other.

TTAASSKK

Write a program that, given the board type, the locations of all animals, and the number D, finds the desired

number of pairs.

IINNPPUUTT

The first line of input contains four integers in this order:

• The board type B (1 ≤ B ≤ 3);

• The number of animals N (1 ≤ N ≤ 100 000);

• The largest distance D at which two animals can hear each other (1 ≤ D ≤ 100 000 000);

• The size of the board M (the largest coordinate allowed to appear in the input):

� When B=1, M will be at most 75 000 000.

� When B=2, M will be at most 75 000.

� When B=3, M will be at most 75.

Each of the following N lines contains B integers separated by single spaces, the coordinates of one toy animal.

Each coordinate will be between 1 and M (inclusive).

More than one animal may occupy the same cell.

OOUUTTPPUUTT

Output should consist of a single integer, the number of pairs of animals that can hear each other.

Note: use a 64-bit integer type to calculate and output the result (long long in C/C++, int64 in Pascal).

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – PAIRS

Page 28 of 35

GGRRAADDIINNGG

In test cases worth a total of 30 points, the number of animals N will be at most 1 000.

Furthermore, for each of the three board types, a solution that correctly solves all test cases of that type will be

awarded at least 30 points.

EEXXAAMMPPLLEESS

input

1 6 5 100
25
50
50
10
20
23

output

4

input

2 5 4 10
5 2
7 2
8 4
6 5
4 4

output

8

input

3 8 10 20
10 10 10
10 10 20
10 20 10
10 20 20
20 10 10
20 10 20
20 20 10
20 20 20

output

12

Clarification for the leftmost example. Suppose the animals are numbered 1 through 6 in the order in which

they are given. The four pairs are:

• 1-5 (distance 5)

• 1-6 (distance 2)

• 2-3 (distance 0)

• 5-6 (distance 3)

Clarification for the middle example. The eight pairs are:

• 1-2 (distance 2)

• 1-4 (distance 4)

• 1-5 (distance 3)

• 2-3 (distance 3)

• 2-4 (distance 4)

• 3-4 (distance 3)

• 3-5 (distance 4)

• 4-5 (distance 3)

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – PAIRS

Page 29 of 35

SSOOLLUUTTIIOONNSS

Let N be the number of animals, M the size of the board and D the largest distance.

Solution for 1D board
To solve the 1D board, we first sort the coordinates and then perform a sweep-line algorithm. We keep track of

two pointers: head and tail. When the head is pointing to an element with coordinate x, the tail is pointing to

the first element with coordinate greater than or equal to x−D.

For each position of head we add head−tail to the total result. As we advance head to the next element, we can

easily adjust tail to point to the required element.

The time complexity of this algorithm is O(N log N) for sorting, and O(N) for sweeping.

Solution for 2D board
To solve the 2D version of the problem, we first consider the distance formula:

 dist(P, Q) = | P.x − Q.x | + | P.y − Q.y |

The formula above will resolve to one of the following four formulas:

 dist(P, Q) = P.x − Q.x + P.y − Q.y = (P.x + P.y) − (Q.x + Q.y)

 dist(P, Q) = P.x − Q.x − P.y + Q.y = (P.x − P.y) − (Q.x − Q.y)

 dist(P, Q) = −P.x + Q.x + P.y − Q.y = (Q.x − Q.y) − (P.x − P.y)

 dist(P, Q) = −P.x + Q.x − P.y + Q.y = (Q.x + Q.y) − (P.x + P.y)

It is easy to see that the distance is always equal to the largest of these four values. As P.x + P.y and P.x − P.y

represent the "diagonal coordinates" of point P we substitute:

 P.d1 := P.x + P.y and P.d2 := P.x − P.y.

Now, we can rewrite the distance formula in terms of d1 and d2:

 dist(P, Q) = max{ P.d1 − Q.d1, P.d2 − Q.d2, Q.d2 − P.d2, Q.d1 − P.d1 },

or shorter:

 dist(P, Q) = max{ |P.d1 − Q.d1|, |P.d2 − Q.d2| }

After substitution, we sort all the points by the first coordinate (d1) increasingly and perform a sweep-line

algorithm similar to the one-dimensional case. Since each point P between head and tail satisfies the inequality

head.d1 − P.d1 ≤ D, we only need to find out for how many of them the inequality |head.d2 − P.d2| ≤ D is

satisfied as well. To calculate that value, we keep all points (their d2 coordinates) between head and tail in either

an interval tree or a binary indexed tree [1] data structure.

The time complexity of the algorithm implemented with a binary indexed tree data structure is O(N log N) for

sorting, and O(N log M) for sweeping, where M is the upper bound on the coordinates.

Solution for 3D board
Inspired by our 2D solution we start with the distance formula once again and obtain:

 dist(P, Q) = max{ |P.f1 − Q.f1|, |P.f2 − Q.f2|, |P.f3 − Q.f3|, |P.f4 − Q.f4| }, where

 P.f1 := P.x + P.y + P.z

 P.f2 := P.x + P.y − P.z

 P.f3 := P.x − P.y + P.z

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – PAIRS

Page 30 of 35

 P.f4 := P.x − P.y − P.z

Again, we perform a sweep-line algorithm on the f1 coordinate while keeping all of the points between head and

tail in a 3D binary indexed tree in order to count the number of points P satisfying inequalities

|head.f2 − P.f2| ≤ D, |head.f3 − P.f3| ≤ D and |head.f4 − P.f4| ≤ D.

The time complexity of the algorithm is O(N log N) for sorting, and O(N log3 M) for sweeping.

It is worth mentioning that we can use this solution to solve all types of boards. We just assign any constant

value (1 for example) to each of the missing coordinates and implement a 3D binary indexed tree using either

dynamic memory allocation, or using a one-dimensional array and manually mapping the 3-dimensional space to

elements of the array.

References
[1] P. M. Fenwick, A new data structure for cumulative frequency tables, Software - Practice and Experience

24, 3 (1994), 327-336, 1994.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – TRAINING

Page 31 of 35

TTRRAAIINNIINNGG
Mirko and Slavko are training hard for the annual tandem cycling marathon taking place in Croatia. They need to

choose a route to train on.

There are N cities and M roads in their country. Every road connects two cities and can be traversed in both

directions. Exactly N−1 of those roads are paved, while the rest of the roads are unpaved trails. Fortunately, the

network of roads was designed so that each pair of cities is connected by a path consisting of paved roads. In

other words, the N cities and the N−1 paved roads form a tree structure.

Additionally, each city is an endpoint for at most 10 roads total.

A training route starts in some city, follows some roads and ends in the same city it started in. Mirko and Slavko

like to see new places, so they made a rule never to go through the same city nor travel the same road twice.

The training route may start in any city and does not need to visit every city.

Riding in the back seat is easier, since the rider is shielded from the wind by the rider in the front. Because of

this, Mirko and Slavko change seats in every city. To ensure that they get the same amount of training, they must

choose a route with an even number of roads.

Mirko and Slavko's competitors decided to block some of the unpaved roads, making it impossible for them to

find a training route satisfying the above requirements. For each unpaved road there is a cost (a positive integer)

associated with blocking the road. It is impossible to block paved roads.

TTAASSKK

Write a program that, given the description of the network of cities and roads, finds the smallest total cost

needed to block the roads so that no training route exists satisfying the above requirements.

IINNPPUUTT

The first line of input contains two integers N and M (2 ≤ N ≤ 1 000, N−1 ≤ M ≤ 5 000), the number of cities

and the total number of roads.

Each of the following M lines contains three integers A, B and C (1 ≤ A ≤ N, 1 ≤ B ≤ N, 0 ≤ C ≤ 10 000),

describing one road. The numbers A and B are different and they represent the cities directly connected by the

road. If C=0, the road is paved; otherwise, the road is unpaved and C represents the cost of blocking it.

Each city is an endpoint for at most 10 roads. There will never be more than one road directly connecting a

single pair of cities.

OOUUTTPPUUTT

Output should consist of a single integer, the smallest total cost as described in the problem statement.

GGRRAADDIINNGG

In test cases worth a total of 30 points, the paved roads will form a chain (that is, no city will be an endpoint for

three or more paved roads).

DDEETTAAIILLEEDD FFEEEEDDBBAACCKK WWHHEENN SSUUBBMMIITTTTIINNGG

During the contest, you may select up to 10 submissions for this task to be evaluated (as soon as possible) on

part of the official test data. After the evaluation is done, a summary of the results will be available on the contest

system.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – TRAINING

Page 32 of 35

EEXXAAMMPPLLEESS

input

5 8
2 1 0
3 2 0
4 3 0
5 4 0
1 3 2
3 5 2
2 4 5
2 5 1

output

5

input

9 14
1 2 0
1 3 0
2 3 14
2 6 15
3 4 0
3 5 0
3 6 12
3 7 13
4 6 10
5 6 0
5 7 0
5 8 0
6 9 11
8 9 0

output

48

The layout of the roads and cities in the first example. Paved roads are shown in bold.

There are five possible routes for Mirko and Slavko. If the roads 1-3, 3-5 and 2-5 are blocked, then Mirko and Slavko
cannot use any of the five routes. The cost of blocking these three roads is 5.

It is also possible to block just two roads, 2-4 and 2-5, but this would result in a higher cost of 6.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – TRAINING

Page 33 of 35

SSOOLLUUTTIIOONN

Detecting an odd cycle in a graph is a well-known problem. A graph does not contain an odd cycle if and only if

it is bipartite. On the other hand, the problem of detecting an even cycle in a graph is not widely known.

We are given a graph consisting of N vertices and M edges. Exactly N−1 edges are marked as tree edges and

they form a tree. An edge that is not a tree edge will be called a non-tree edge. Every non-tree edge e has a

weight w(e) associated with it.

The task asks us to find a minimum-weighted set of non-tree edges whose removal results in a graph that does

not contain a cycle of even length. We will call such a cycle an even cycle. Reasoning backwards, starting from a

graph containing tree edges only, we have to find a maximum-weighted set of non-tree edges that can be added

to the graph without forming any even cycles.

In order to describe the model solution, we first need to make a few observations about the structure of the

graph we are working with.

Even and odd edges
Consider a non-tree edge e={A, B}. We define the tree path of the edge e to be the unique path from A to B

consisting of tree edges only. If the length of the tree path is even, we say that e is an even edge; otherwise we

say that e is an odd edge. We will use TP(e) to denote the tree path of an edge e.

Obviously, any odd edge present in the graph together with its tree path forms an even cycle. Therefore, we can

never include an odd edge in our graph and we can completely ignore them.

Relation between two even edges
Individual even edges may exist in the graph. However, if we include several even edges, an even cycle might be

formed. More precisely, if e1 and e2 are even edges such that TP(e1) and TP(e2) share a common tree edge, then

adding both e1 and e2 to the graph necessarily creates an even cycle.

In order to sketch the proof of this claim, consider the two odd cycles created by e1 and e2 together with their

respective tree paths. If we remove all common tree edges from those cycles we get two paths P1 and P2. The

parity of P1 is equal to the parity of the P2 since we removed the same number of edges from the two initial odd

cycles. As P1 and P2 also have the same endpoints, we can merge them into one big even cycle.

Tree edges contained in odd cycles
As a direct consequence of the previous claim, we can conclude that every tree edge may be contained in at

most one odd cycle.

Conversely, if we add only even edges to the tree in such a way that every tree edge is contained in at most one

odd cycle, then we couldn’t have formed any even cycles. We briefly sketch the proof of this claim here. If an

even cycle existed, it would have to contain one or more non-tree edges. Informally, if it contains exactly one

non-tree edge we have a contradiction with the assumption that only even edges are added; if it contains two or

more non-tree edges then we will arrive at a contradiction with the second assumption.

Model solution
Now, we can use our observations to develop a dynamic programming solution for the problem. A state is a

subtree of the given tree. For each state we calculate the weight of the maximum-weighted set of even edges that

can be added to the subtree while maintaining the property that each tree edge is contained in at most one odd

cycle. The solution for the task is the weight associated with the state representing the initial tree.

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – TRAINING

Page 34 of 35

To obtain a recursive relation, we consider all even edges with tree paths passing through the root of the tree.

We can choose to do one of the following:

(1) We do not add any even edge whose tree path passes through the root of the tree. In this case, we can

delete the root and proceed to calculate the optimal solution for each of the subtrees obtained after

deleting the root node.

(2) We choose an even edge e whose tree path passes through the root of the tree and add it to the tree.

Next, we delete all tree edges along TP(e) (since, now, they are contained in one odd cycle), and, finally,

we proceed to calculate the optimal solution for each of the subtrees obtained after deleting the tree

path. Add w(e) to the total sum.

We will use the tree in figure 1 as an example. Figure 2 shows case (1) in the recursive relation (we choose not to

include an edge whose tree path passes through the root). Figure 3 shows case (2) in the recursive relation, when

we include the even edge e={7, 9} in the graph.

Figure 1

Figure 2

Figure 3

INTERNATIONAL OLYMPIAD IN INFORMATICS 2007
ZAGREB – CROATIA
AUGUST 15 – 22

PROPOSED BY:
LUKA KALINOVČIĆ

COMPETITION DAY 2 – TRAINING

Page 35 of 35

Because of the way the trees are decomposed, all subtrees that appear as subproblems can be represented with an

integer and a bit mask. The integer represents the index of the subtree's root node, while the bit mask represents

which of the root node's children are removed from the subtree.

The total number of possible states is, therefore, bounded by N·2K where K is the maximum degree of a node.

Depending on the implementation details, the time complexity of the algorithm can vary. The official

implementation has time complexity O(M log M + MN + M·2K).

