$19^{\text {th }}$ Junior Balkan Mathematical Olympiad June 24-29, 2015, Belgrade, Serbia

Problem 1. Find all prime numbers a, b, c and positive integers k which satisfy the equation

$$
a^{2}+b^{2}+16 \cdot c^{2}=9 \cdot k^{2}+1
$$

Solution:

The relation $9 \cdot k^{2}+1 \equiv 1(\bmod 3)$ implies

$$
a^{2}+b^{2}+16 \cdot c^{2} \equiv 1(\bmod 3) \Leftrightarrow a^{2}+b^{2}+c^{2} \equiv 1(\bmod 3) .
$$

Since $a^{2} \equiv 0,1(\bmod 3), b^{2} \equiv 0,1(\bmod 3), c^{2} \equiv 0,1(\bmod 3)$, we have:

a^{2}	0	0	0	0	1	1	1	1
b^{2}	0	0	1	1	0	0	1	1
c^{2}	0	1	0	1	0	1	0	1
$a^{2}+b^{2}+c^{2}$	0	1	1	2	1	2	2	0

From the previous table it follows that two of three prime numbers a, b, c are equal to 3 .

Case 1. $a=b=3$

We have

$$
\begin{aligned}
& a^{2}+b^{2}+16 \cdot c^{2}=9 \cdot k^{2}+1 \Leftrightarrow 9 \cdot k^{2}-16 \cdot c^{2}=17 \Leftrightarrow(3 k-4 c) \cdot(3 k+4 c)=17, \\
& \Leftrightarrow\left\{\begin{array} { l }
{ 3 k - 4 c = 1 , } \\
{ 3 k + 4 c = 1 7 , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
c=2, \\
k=3,
\end{array} \quad \text { and } \quad(a, b, c, k)=(3,3,2,3) .\right.\right.
\end{aligned}
$$

Case 2. $c=3$
If $\left(3, b_{0}, c, k\right)$ is a solution of the given equation, then $\left(b_{0}, 3, c, k\right)$ is a solution too.
Let $a=3$. We have

$$
a^{2}+b^{2}+16 \cdot c^{2}=9 \cdot k^{2}+1 \Leftrightarrow 9 \cdot k^{2}-b^{2}=152 \Leftrightarrow(3 k-b) \cdot(3 k+b)=152 .
$$

Both factors shall have the same parity and we obtain only 2 cases:

- $\left\{\begin{array}{l}3 k-b=2, \\ 3 k+b=76,\end{array} \Leftrightarrow\left\{\begin{array}{l}b=37, \\ k=13,\end{array}\right.\right.$ and $(a, b, c, k)=(3,37,3,13) ;$
- $\left\{\begin{array}{l}3 k-b=4, \\ 3 k+b=38,\end{array} \Leftrightarrow\left\{\begin{array}{l}b=17, \\ k=7,\end{array}\right.\right.$ and $(a, b, c, k)=(3,17,3,7)$.

So, the given equation has 5 solutions:
$\{(37,3,3,13),(17,3,3,7),(3,37,3,13),(3,17,3,7),(3,3,2,3)\}$.
Problem 2. Let a, b, c be positive real numbers such that $a+b+c=3$. Find the minimum value of the expression

$$
A=\frac{2-a^{3}}{a}+\frac{2-b^{3}}{b}+\frac{2-c^{3}}{c}
$$

$19^{\text {th }}$ Junior Balkan Mathematical Olympiad
June 24-29, 2015, Belgrade, Serbia

Solution:

We can rewrite A as follows:

$$
\begin{aligned}
& A=\frac{2-a^{3}}{a}+\frac{2-b^{3}}{b}+\frac{2-c^{3}}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-a^{2}-b^{2}-c^{2}= \\
& 2\left(\frac{a b+b c+c a}{a b c}\right)-\left(a^{2}+b^{2}+c^{2}\right)=2\left(\frac{a b+b c+c a}{a b c}\right)-\left((a+b+c)^{2}-2(a b+b c+c a)\right)= \\
& 2\left(\frac{a b+b c+c a}{a b c}\right)-(9-2(a b+b c+c a))=2\left(\frac{a b+b c+c a}{a b c}\right)+2(a b+b c+c a)-9= \\
& 2(a b+b c+c a)\left(\frac{1}{a b c}+1\right)-9 .
\end{aligned}
$$

Recall now the well-known inequality $(x+y+z)^{2} \geq 3(x y+y z+z x)$ and set $x=a b, y=b c, z=c a$, to obtain $(a b+b c+c a)^{2} \geq 3 a b c(a+b+c)=9 a b c$, where we have used $a+b+c=3$. By taking the square roots on both sides of the last one we obtain:

$$
\begin{equation*}
a b+b c+c a \geq 3 \sqrt{a b c} \tag{1}
\end{equation*}
$$

Also by using AM-GM inequality we get that

$$
\begin{equation*}
\frac{1}{a b c}+1 \geq 2 \sqrt{\frac{1}{a b c}} \tag{2}
\end{equation*}
$$

Multiplication of (1) and (2) gives:

$$
(a b+b c+c a)\left(\frac{1}{a b c}+1\right) \geq 3 \sqrt{a b c} \cdot 2 \sqrt{\frac{1}{a b c}}=6 .
$$

So $A \geq 2 \cdot 6-9=3$ and the equality holds if and only if $a=b=c=1$, so the minimum value is 3.

Problem 3. Let $\triangle A B C$ be an acute triangle. The lines l_{1}, l_{2} are perpendicular to $A B$ at the points A, B respectively. The perpendicular lines from the midpoint M of $A B$ to the sides of the triangle $A C, B C$ intersect the lines l_{1}, l_{2} at the points E, F, respectively. If D is the intersection point of $E F$ and $M C$, prove that

$$
\angle A D B=\angle E M F .
$$

Solution:

Let H, G be the points of intersection of $M E, M F$ with $A C, B C$ respectively. From the similarity of triangles $\triangle M H A$ and $\triangle M A E$ we get $\frac{M H}{M A}=\frac{M A}{M E}$, thus

$$
\begin{equation*}
M A^{2}=M H \cdot M E . \tag{1}
\end{equation*}
$$

Similarly, from the similarity of triangles $\triangle M B G$ and $\triangle M F B$ we get $\frac{M B}{M F}=\frac{M G}{M B}$, thus

$$
\begin{equation*}
M B^{2}=M F \cdot M G \tag{2}
\end{equation*}
$$

Since $M A=M B$, from (1), (2), we conclude that the points E, H, G, F are concyclic.

$19^{\text {th }}$ Junior Balkan Mathematical Olympiad June 24-29, 2015, Belgrade, Serbia

Therefore, we get that $\angle F E H=\angle F E M=\angle H G M$. Also, the quadrilateral $C H M G$ is cyclic, so $\angle C M H=\angle H G C$. We have

$$
\angle F E H+\angle C M H=\angle H G M+\angle H G C=90^{\circ}
$$

thus $C M \perp E F$. Now, from the cyclic quadrilaterals $F D M B$ and $E A M D$, we get that $\angle D F M=\angle D B M$ and $\angle D E M=\angle D A M$. Therefore, the triangles $\triangle E M F$ and $\triangle A D B$ are similar, so $\angle A D B=\angle E M F$.

Problem 4.

An L-figure is one of the following four pieces, each consisting of three unit squares:

A 5×5 board, consisting of 25 unit squares, a positive integer $k \leq 25$ and an unlimited supply L-figures are given. Two players, \boldsymbol{A} and \boldsymbol{B}, play the following game: starting with \boldsymbol{A} they alternatively mark a previously unmarked unit square until they marked a total of k unit squares.
We say that a placement of L-figures on unmarked unit squares is called good if the L-figure do not overlap and each of them covers exactly three unmarked unit squares of the board. \boldsymbol{B} wins if every good placement of L-figures leaves uncovered at least three unmarked unit squares. Determine the minimum value of k for which \boldsymbol{B} has a winning strategy.

Solution:

We will show that player \boldsymbol{A} wins if $k=1,2,3$, but player \boldsymbol{B} wins if $k=4$. Thus the smallest k for which \boldsymbol{B} has a winning strategy exists and is equal to 4 .
If $k=1$, player \boldsymbol{A} marks the upper left corner of the square and then fills it as follows.

$19^{\text {th }}$ Junior Balkan Mathematical Olympiad June 24-29, 2015, Belgrade, Serbia

If $k=2$, player \boldsymbol{A} marks the upper left corner of the square. Whatever square player \boldsymbol{B} marks, then player \boldsymbol{A} can fill in the square in exactly the same pattern as above except that he doesn't put the L-figure which covers the marked square of \boldsymbol{B}. Player \boldsymbol{A} wins because he has left only two unmarked squares uncovered.
For $k=3$, player \boldsymbol{A} wins by following the same strategy. When he has to mark a square for the second time, he marks any yet unmarked square of the L-figure that covers the marked square of \boldsymbol{B}.
Let us now show that for $k=4$ player \boldsymbol{B} has a winning strategy. Since there will be 21 unmarked squares, player \boldsymbol{A} will need to cover all of them with seven L-figures. We can assume that in his first move, player \boldsymbol{A} does not mark any square in the bottom two rows of the chessboard (otherwise just rotate the chessboard). In his first move player \boldsymbol{B} marks the square labeled 1 in the following figure.

If player \boldsymbol{A} in his next move does not mark any of the squares labeled 2,3 and 4 then player \boldsymbol{B} marks the square labeled 3. Player \boldsymbol{B} wins as the square labeled 2 is left unmarked but cannot be covered with an L-figure.
If player \boldsymbol{A} in his next move marks the square labeled 2 , then player \boldsymbol{B} marks the square labeled 5. Player \boldsymbol{B} wins as the square labeled 3 is left unmarked but cannot be covered with an L-figure.
Finally, if player \boldsymbol{A} in his next move marks one of the squares labeled 3 or 4, player \boldsymbol{B} marks the other of these two squares. Player \boldsymbol{B} wins as the square labeled 2 is left unmarked but cannot be covered with an L-figure.
Since we have covered all possible cases, player \boldsymbol{B} wins when $k=4$.

