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Problem 1. Let z, y and z be positive real numbers such that xy + yz + zx = 3zy=z.
Prove that
y+yiz+ e >2a+y+2)—3

and determine when equality holds.

1
Solution. The given condition can be rearranged to — + —+ — = 3. Using this, we obtain:
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Equality holds if and only if we have xy = yz = zx = 1, or, in other words, x =y = 2z = 1.

1 1
Alternative solution. It follows from — + — + — = 3 and Cauchy-Schwarz inequality
r Yy oz
that
2 2 2 L1 1 2 2 2
(zy+yz+ 27x) = ;—l—;—l—; (z*y +y“z + 2°x)

- ((%) () (%)) (VD)) + V3 + (V)

> (z+y+2)>

(z+y+2)?

Therefore, 2%y + y?z + 2%z > and if z +y + z = t it suffices to show that

t2
3 > 2t — 3. The latter is equivalent to (t — 3)? > 0. Equality holds when

LYY = YV z = e,
ie.zy=yz=zrandt=x+y+2=3. Hence, r =y=2=1.

Comment. The inequality is true with the condition xy + yz + zx < 3zyz.



Problem 2. A special number is a positive integer n for which there exist positive integers

a, b, c and d with
a® + 263
n= ———-.
3+ 2d3
Prove that:

(a) there are infinitely many special numbers;
(b) 2014 is not a special number.

Solution. (a) Every perfect cube k% of a positive integer is special because we can write

13 a® + 203 _ (ka)® + 2(kb)?
a® + 2b3 a® + 263

for some positive integers a, b.

(b) Observe that 2014 = 2.19.53. If 2014 is special, then we have,
2® + 2y° = 2014(u® + 20°) (1)

for some positive integers x, y, u, v. We may assume that 2® + 2% is minimal with
this property. Now, we will use the fact that if 19 divides x® + 2y3, then it divides
both = and y. Indeed, if 19 does not divide x, then it does not divide y too. The
relation 2% = —2y® (mod 19) implies (23)® = (—2y3)® (mod 19). The latter congruence
is equivalent to z'® = 2%¢!® (mod 19). Now, according to the Fermat’s Little Theorem,
we obtain 1 = 2% (mod 19), that is 19 divides 63, not possible.
It follows z = 19x1, y = 19y;, for some positive integers x; and y;. Replacing in (1) we
get

192(z% + 2y3)) = 2.53(u® + 2v%) (2)

i.e. 19)u® + 2v3. Tt follows u = 19u; and v = 19v;, and replacing in (2) we get

od 4 2% = 2014 (ud + 203).



Clearly, 23 + 2y3 < 23 + 2y3, contradicting the minimality of x3 + 233

Problem 3. Let ABC'D be a trapezium inscribed in a circle I' with diameter AB. Let
E be the intersection point of the diagonals AC and BD. The circle with center B and
radius BE meets ' at the points K and L, where K is on the same side of AB as C'. The
line perpendicular to BD at FE intersects C'D at M.

Prove that KM is perpendicular to DL.

Solution. Since AB || CD, we have that ABCD is isosceles trapezium. Let O be the
center of kK and EM meets AB at point (). Then, from the right angled triangle BEQ), we
have BE? = BO.BQ. Since BE = BK, we get BK? = BO.BQ (1). Suppose that KL
meets AB at P. Then, from the right angled triangle BAK, we have BK? = BP.BA (2)
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From (1) and (2) we get B0 = B—j =5 and therefore P is the midpoint of BQ (3).

However, DM || AQ and M@ || AD (both are perpendicular to DB). Hence, AQM D
is parallelogram and thus M@Q = AD = BC. We conclude that QBCM is isosceles
trapezium. It follows from (3) that KL is the perpendicular bisector of BQ and CM,

that is, M is symmetric to C' with respect to K L. Finally, we get that M is the orthocenter



of the triangle DLK by using the well-known result that the reflection of the orthocenter

of a triangle to every side belongs to the circumcircle of the triangle and vise versa.

Problem 4. Let n be a positive integer. A regular hexagon with side length n is divided
into equilateral triangles with side length 1 by lines parallel to its sides.
Find the number of regular hexagons all of whose vertices are among the vertices of the

equilateral triangles.

Solution. By a lattice hexagon we will mean a regular hexagon whose sides run along edges
of the lattice. Given any regular hexagon H, we construct a lattice hexagon whose edges
pass through the vertices of H, as shown in the figure, which we will call the enveloping
lattice hexagon of H. Given a lattice hexagon G of side length m, the number of regular

hexagons whose enveloping lattice hexagon is G is exactly m.
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tice hexagons of side length m in our lattice: they are

those with centres lying at most n —m steps from the

centre of the lattice. In particular, the total number

of regular hexagons equals

n

N = Z(3(n—m)(n—m+1)+1)m:(3n2+3n)im—3(2m+1)im2+3im3.

m=1

n 2
Since Zm— n+1 Zm = n+1)6(2n+1) and Zm = (@) it is

m=1

1
easily checked that N = (#) .



