$31^{\text {st }}$ Balkan Mathematical Olympiad
 May 2-7 2014
 Pleven
 Bulgaria

Problems and Solutions

Problem 1. Let x, y and z be positive real numbers such that $x y+y z+z x=3 x y z$. Prove that

$$
x^{2} y+y^{2} z+z^{2} x \geq 2(x+y+z)-3
$$

and determine when equality holds.
Solution. The given condition can be rearranged to $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$. Using this, we obtain:

$$
\begin{aligned}
x^{2} y+y^{2} z+z^{2} x-2(x+y+z)+3 & =x^{2} y-2 x+\frac{1}{y}+y^{2} z-2 y+\frac{1}{z}+z^{2} x-2 x+\frac{1}{x}= \\
& =y\left(x-\frac{1}{y}\right)^{2}+z\left(y-\frac{1}{z}\right)^{2}+x\left(z-\frac{1}{z}\right)^{2} \geq 0
\end{aligned}
$$

Equality holds if and only if we have $x y=y z=z x=1$, or, in other words, $x=y=z=1$.
Alternative solution. It follows from $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$ and Cauchy-Schwarz inequality that

$$
\begin{aligned}
3\left(x^{2} y+y^{2} z+z^{2} x\right) & =\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x^{2} y+y^{2} z+z^{2} x\right) \\
& \left.=\left(\left(\frac{1}{\sqrt{y}}\right)^{2}+\left(\frac{1}{\sqrt{z}}\right)^{2}+\left(\frac{1}{\sqrt{x}}\right)^{2}\right)\left((x \sqrt{y})^{2}\right)+(y \sqrt{z})^{2}+(z \sqrt{x})^{2}\right) \\
& \geq(x+y+z)^{2}
\end{aligned}
$$

Therefore, $x^{2} y+y^{2} z+z^{2} x \geq \frac{(x+y+z)^{2}}{3}$ and if $x+y+z=t$ it suffices to show that $\frac{t^{2}}{3} \geq 2 t-3$. The latter is equivalent to $(t-3)^{2} \geq 0$. Equality holds when

$$
x \sqrt{y} \sqrt{y}=y \sqrt{z} \sqrt{z}=z \sqrt{x} \sqrt{x},
$$

i.e. $x y=y z=z x$ and $t=x+y+z=3$. Hence, $x=y=z=1$.

Comment. The inequality is true with the condition $x y+y z+z x \leq 3 x y z$.

Problem 2. A special number is a positive integer n for which there exist positive integers a, b, c and d with

$$
n=\frac{a^{3}+2 b^{3}}{c^{3}+2 d^{3}} .
$$

Prove that:
(a) there are infinitely many special numbers;
(b) 2014 is not a special number.

Solution. (a) Every perfect cube k^{3} of a positive integer is special because we can write

$$
k^{3}=k^{3} \frac{a^{3}+2 b^{3}}{a^{3}+2 b^{3}}=\frac{(k a)^{3}+2(k b)^{3}}{a^{3}+2 b^{3}}
$$

for some positive integers a, b.
(b) Observe that $2014=2.19 .53$. If 2014 is special, then we have,

$$
\begin{equation*}
x^{3}+2 y^{3}=2014\left(u^{3}+2 v^{3}\right) \tag{1}
\end{equation*}
$$

for some positive integers x, y, u, v. We may assume that $x^{3}+2 y^{3}$ is minimal with this property. Now, we will use the fact that if 19 divides $x^{3}+2 y^{3}$, then it divides both x and y. Indeed, if 19 does not divide x, then it does not divide y too. The relation $x^{3} \equiv-2 y^{3}(\bmod 19)$ implies $\left(x^{3}\right)^{6} \equiv\left(-2 y^{3}\right)^{6}(\bmod 19)$. The latter congruence is equivalent to $x^{18} \equiv 2^{6} y^{18}(\bmod 19)$. Now, according to the Fermat's Little Theorem, we obtain $1 \equiv 2^{6}(\bmod 19)$, that is 19 divides 63 , not possible.

It follows $x=19 x_{1}, y=19 y_{1}$, for some positive integers x_{1} and y_{1}. Replacing in (1) we get

$$
\begin{equation*}
19^{2}\left(x_{1}^{3}+2 y_{1}^{3}\right)=2.53\left(u^{3}+2 v^{3}\right) \tag{2}
\end{equation*}
$$

i.e. $19 \mid u^{3}+2 v^{3}$. It follows $u=19 u_{1}$ and $v=19 v_{1}$, and replacing in (2) we get

$$
x_{1}^{3}+2 y_{1}^{3}=2014\left(u_{1}^{3}+2 v_{1}^{3}\right) .
$$

Clearly, $x_{1}^{3}+2 y_{1}^{3}<x^{3}+2 y^{3}$, contradicting the minimality of $x^{3}+2 y^{3}$.

Problem 3. Let $A B C D$ be a trapezium inscribed in a circle Γ with diameter $A B$. Let E be the intersection point of the diagonals $A C$ and $B D$. The circle with center B and radius $B E$ meets Γ at the points K and L, where K is on the same side of $A B$ as C. The line perpendicular to $B D$ at E intersects $C D$ at M.

Prove that $K M$ is perpendicular to $D L$.

Solution. Since $A B \| C D$, we have that $A B C D$ is isosceles trapezium. Let O be the center of k and $E M$ meets $A B$ at point Q. Then, from the right angled triangle $B E Q$, we have $B E^{2}=B O \cdot B Q$. Since $B E=B K$, we get $B K^{2}=B O \cdot B Q$ (1). Suppose that $K L$ meets $A B$ at P. Then, from the right angled triangle $B A K$, we have $B K^{2}=B P . B A$ (2)

From (1) and (2) we get $\frac{B P}{B Q}=\frac{B O}{B A}=\frac{1}{2}$, and therefore P is the midpoint of $B Q$ (3).
However, $D M \| A Q$ and $M Q \| A D$ (both are perpendicular to $D B$). Hence, $A Q M D$ is parallelogram and thus $M Q=A D=B C$. We conclude that $Q B C M$ is isosceles trapezium. It follows from (3) that $K L$ is the perpendicular bisector of $B Q$ and $C M$, that is, M is symmetric to C with respect to $K L$. Finally, we get that M is the orthocenter
of the triangle $D L K$ by using the well-known result that the reflection of the orthocenter of a triangle to every side belongs to the circumcircle of the triangle and vise versa.

Problem 4. Let n be a positive integer. A regular hexagon with side length n is divided into equilateral triangles with side length 1 by lines parallel to its sides.

Find the number of regular hexagons all of whose vertices are among the vertices of the equilateral triangles.

Solution. By a lattice hexagon we will mean a regular hexagon whose sides run along edges of the lattice. Given any regular hexagon H, we construct a lattice hexagon whose edges pass through the vertices of H, as shown in the figure, which we will call the enveloping lattice hexagon of H. Given a lattice hexagon G of side length m, the number of regular hexagons whose enveloping lattice hexagon is G is exactly m.

Yet also there are precisely $3(n-m)(n-m+1)+1$ lattice hexagons of side length m in our lattice: they are those with centres lying at most $n-m$ steps from the centre of the lattice. In particular, the total number of regular hexagons equals

$N=\sum_{m=1}^{n}(3(n-m)(n-m+1)+1) m=\left(3 n^{2}+3 n\right) \sum_{m=1}^{n} m-3(2 m+1) \sum_{m=1}^{n} m^{2}+3 \sum_{m=1}^{n} m^{3}$.
Since $\sum_{m=1}^{n} m=\frac{n(n+1)}{2}, \sum_{m=1}^{n} m^{2}=\frac{n(n+1)(2 n+1)}{6}$ and $\sum_{m=1}^{n} m^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ it is easily checked that $N=\left(\frac{n(n+1)}{2}\right)^{2}$.

