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Problem 1. Let x, y and z be positive real numbers such that xy + yz + zx = 3xyz.

Prove that

x2y + y2z + z2x ≥ 2(x+ y + z)− 3

and determine when equality holds.

Solution. The given condition can be rearranged to
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Equality holds if and only if we have xy = yz = zx = 1, or, in other words, x = y = z = 1.

Alternative solution. It follows from
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= 3 and Cauchy-Schwarz inequality

that
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Therefore, x2y + y2z + z2x ≥ (x+ y + z)2
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i.e. xy = yz = zx and t = x+ y + z = 3. Hence, x = y = z = 1.

Comment. The inequality is true with the condition xy + yz + zx ≤ 3xyz.



Problem 2. A special number is a positive integer n for which there exist positive integers

a, b, c and d with

n =
a3 + 2b3

c3 + 2d3
.

Prove that:

(a) there are infinitely many special numbers;

(b) 2014 is not a special number.

Solution. (a) Every perfect cube k3 of a positive integer is special because we can write

k3 = k3
a3 + 2b3

a3 + 2b3
=

(ka)3 + 2(kb)3

a3 + 2b3

for some positive integers a, b.

(b) Observe that 2014 = 2.19.53. If 2014 is special, then we have,

x3 + 2y3 = 2014(u3 + 2v3) (1)

for some positive integers x, y, u, v. We may assume that x3 + 2y3 is minimal with

this property. Now, we will use the fact that if 19 divides x3 + 2y3, then it divides

both x and y. Indeed, if 19 does not divide x, then it does not divide y too. The

relation x3 ≡ −2y3 (mod 19) implies (x3)6 ≡ (−2y3)6 (mod 19). The latter congruence

is equivalent to x18 ≡ 26y18 (mod 19). Now, according to the Fermat’s Little Theorem,

we obtain 1 ≡ 26 (mod 19), that is 19 divides 63, not possible.

It follows x = 19x1, y = 19y1, for some positive integers x1 and y1. Replacing in (1) we

get

192(x3

1
+ 2y3

1
) = 2.53(u3 + 2v3) (2)

i.e. 19|u3 + 2v3. It follows u = 19u1 and v = 19v1, and replacing in (2) we get
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1
+ 2y3

1
= 2014(u3

1
+ 2v3

1
).



Clearly, x3

1
+ 2y3

1
< x3 + 2y3, contradicting the minimality of x3 + 2y3.

Problem 3. Let ABCD be a trapezium inscribed in a circle Γ with diameter AB. Let

E be the intersection point of the diagonals AC and BD. The circle with center B and

radius BE meets Γ at the points K and L, where K is on the same side of AB as C. The

line perpendicular to BD at E intersects CD at M .

Prove that KM is perpendicular to DL.

Solution. Since AB ‖ CD, we have that ABCD is isosceles trapezium. Let O be the

center of k and EM meets AB at point Q. Then, from the right angled triangle BEQ, we

have BE2 = BO.BQ. Since BE = BK, we get BK2 = BO.BQ (1). Suppose that KL

meets AB at P . Then, from the right angled triangle BAK, we have BK2 = BP.BA (2)
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From (1) and (2) we get
BP
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=

BO

BA
=

1

2
, and therefore P is the midpoint of BQ (3).

However, DM ‖ AQ and MQ ‖ AD (both are perpendicular to DB). Hence, AQMD

is parallelogram and thus MQ = AD = BC. We conclude that QBCM is isosceles

trapezium. It follows from (3) that KL is the perpendicular bisector of BQ and CM ,

that is, M is symmetric to C with respect toKL. Finally, we get thatM is the orthocenter



of the triangle DLK by using the well-known result that the reflection of the orthocenter

of a triangle to every side belongs to the circumcircle of the triangle and vise versa.

Problem 4. Let n be a positive integer. A regular hexagon with side length n is divided

into equilateral triangles with side length 1 by lines parallel to its sides.

Find the number of regular hexagons all of whose vertices are among the vertices of the

equilateral triangles.

Solution. By a lattice hexagon we will mean a regular hexagon whose sides run along edges

of the lattice. Given any regular hexagon H , we construct a lattice hexagon whose edges

pass through the vertices of H , as shown in the figure, which we will call the enveloping

lattice hexagon of H . Given a lattice hexagon G of side length m, the number of regular

hexagons whose enveloping lattice hexagon is G is exactly m.

Yet also there are precisely 3(n−m)(n−m+1)+1 lat-

tice hexagons of side length m in our lattice: they are

those with centres lying at most n−m steps from the

centre of the lattice. In particular, the total number

of regular hexagons equals
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easily checked that N =
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